Moving Average Dieses Beispiel lehrt Sie, wie Sie den gleitenden Durchschnitt einer Zeitreihe in Excel berechnen können. Ein gleitender Durchschnitt wird verwendet, um Unregelmäßigkeiten (Gipfel und Täler) zu glätten, um Trends leicht zu erkennen. 1. Zuerst schauen wir uns unsere Zeitreihen an. 2. Klicken Sie auf der Registerkarte Daten auf Datenanalyse. Hinweis: Kann die Schaltfläche Datenanalyse nicht finden Hier klicken, um das Analysis ToolPak-Add-In zu laden. 3. Wählen Sie Moving Average und klicken Sie auf OK. 4. Klicken Sie in das Feld Eingabebereich und wählen Sie den Bereich B2: M2. 5. Klicken Sie in das Feld Intervall und geben Sie 6 ein. 6. Klicken Sie in das Feld Ausgabebereich und wählen Sie Zelle B3. 8. Zeichnen Sie einen Graphen dieser Werte. Erläuterung: Da wir das Intervall auf 6 setzen, ist der gleitende Durchschnitt der Durchschnitt der bisherigen 5 Datenpunkte und der aktuelle Datenpunkt. Dadurch werden Gipfel und Täler geglättet. Die Grafik zeigt einen zunehmenden Trend. Excel kann den gleitenden Durchschnitt für die ersten 5 Datenpunkte nicht berechnen, da es nicht genügend vorherige Datenpunkte gibt. 9. Wiederholen Sie die Schritte 2 bis 8 für Intervall 2 und Intervall 4. Fazit: Je größer das Intervall, desto mehr werden die Gipfel und Täler geglättet. Je kleiner das Intervall ist, desto näher sind die gleitenden Mittelwerte auf die tatsächlichen Datenpunkte. Moving durchschnittliche und exponentielle Glättung Modelle Als ein erster Schritt in die Bewegung über mittlere Modelle, zufällige Walk-Modelle und lineare Trend-Modelle, Nicht-Sektion Muster und Trends können mit extrapoliert werden Ein gleitendes Durchschnitt oder Glättungsmodell. Die Grundannahme hinter Mittelwertbildung und Glättung von Modellen ist, dass die Zeitreihe lokal stationär mit einem langsam variierenden Mittel ist. Daher nehmen wir einen bewegten (lokalen) Durchschnitt, um den aktuellen Wert des Mittelwerts abzuschätzen und dann das als die Prognose für die nahe Zukunft zu verwenden. Dies kann als Kompromiss zwischen dem mittleren Modell und dem random-walk-without-drift-Modell betrachtet werden. Die gleiche Strategie kann verwendet werden, um einen lokalen Trend abzuschätzen und zu extrapolieren. Ein gleitender Durchschnitt wird oft als quotsmoothedquot Version der ursprünglichen Serie, weil kurzfristige Mittelung hat die Wirkung der Glättung der Beulen in der ursprünglichen Serie. Durch die Anpassung des Grades der Glättung (die Breite des gleitenden Durchschnitts), können wir hoffen, eine Art von optimalem Gleichgewicht zwischen der Leistung der mittleren und zufälligen Wandermodelle zu schlagen. Die einfachste Art von Mittelungsmodell ist die. Einfache (gleichgewichtete) Moving Average: Die Prognose für den Wert von Y zum Zeitpunkt t1, der zum Zeitpunkt t gemacht wird, entspricht dem einfachen Durchschnitt der letzten m Beobachtungen: (Hier und anderswo verwende ich das Symbol 8220Y-hat8221 zu stehen Für eine Prognose der Zeitreihe Y, die zum frühestmöglichen früheren Datum durch ein gegebenes Modell gemacht wurde.) Dieser Durchschnitt ist in der Periode t (m1) 2 zentriert, was impliziert, dass die Schätzung des lokalen Mittels dazu neigen wird, hinter dem wahren zu liegen Wert des lokalen Mittels um etwa (m1) 2 Perioden. So sagen wir, dass das Durchschnittsalter der Daten im einfachen gleitenden Durchschnitt (m1) 2 relativ zu dem Zeitraum ist, für den die Prognose berechnet wird: Dies ist die Zeitspanne, mit der die Prognosen dazu neigen, hinter den Wendepunkten in den Daten zu liegen . Zum Beispiel, wenn Sie durchschnittlich die letzten 5 Werte sind, werden die Prognosen etwa 3 Perioden spät in Reaktion auf Wendepunkte. Beachten Sie, dass, wenn m1, das einfache gleitende Durchschnitt (SMA) - Modell entspricht dem zufälligen Walk-Modell (ohne Wachstum). Wenn m sehr groß ist (vergleichbar mit der Länge der Schätzperiode), entspricht das SMA-Modell dem mittleren Modell. Wie bei jedem Parameter eines Prognosemodells ist es üblich, den Wert von k anzupassen, um die besten Quoten für die Daten zu erhalten, d. h. die kleinsten Prognosefehler im Durchschnitt. Hier ist ein Beispiel für eine Reihe, die zufällige Schwankungen um ein langsam variierendes Mittel zeigt. Zuerst können wir versuchen, es mit einem zufälligen Spaziergang Modell, das entspricht einem einfachen gleitenden Durchschnitt von 1 Begriff: Das zufällige Spaziergang Modell reagiert sehr schnell auf Änderungen in der Serie, aber in diesem Fall nimmt es viel von der Quotierung in der Daten (die zufälligen Schwankungen) sowie das quotsignalquot (das lokale Mittel). Wenn wir stattdessen einen einfachen gleitenden Durchschnitt von 5 Begriffen ausprobieren, erhalten wir einen glatteren Prognosen: Der 5-fach einfache gleitende Durchschnitt liefert in diesem Fall deutlich kleinere Fehler als das zufällige Spaziergangmodell. Das Durchschnittsalter der Daten in dieser Prognose beträgt 3 ((51) 2), so dass es dazu neigt, hinter den Wendepunkten um etwa drei Perioden zurückzukehren. (Zum Beispiel scheint ein Abschwung in der Periode 21 aufgetreten zu sein, aber die Prognosen drehen sich nicht um einige Perioden später.) Beachten Sie, dass die Langzeitprognosen des SMA-Modells eine horizontale Gerade sind, genau wie im zufälligen Spaziergang Modell. So geht das SMA-Modell davon aus, dass es keinen Trend in den Daten gibt. Während die Prognosen aus dem zufälligen Wandermodell einfach dem letzten beobachteten Wert entsprechen, sind die Prognosen des SMA-Modells gleich einem gewichteten Durchschnitt der letzten Werte. Die von Statgraphics für die Langzeitprognosen des einfachen gleitenden Durchschnittes berechneten Vertrauensgrenzen werden nicht weiter erhöht, wenn der Prognosehorizont zunimmt. Das ist offensichtlich nicht richtig Leider gibt es keine zugrundeliegende statistische Theorie, die uns sagt, wie sich die Konfidenzintervalle für dieses Modell erweitern sollten. Allerdings ist es nicht zu schwer, empirische Schätzungen der Vertrauensgrenzen für die längerfristigen Prognosen zu berechnen. Zum Beispiel könnten Sie eine Kalkulationstabelle einrichten, in der das SMA-Modell zur Vorhersage von 2 Schritten voraus, 3 Schritten voraus, etc. im historischen Datenmuster verwendet werden würde. Sie können dann die Stichproben-Standardabweichungen der Fehler bei jedem Prognosehorizont berechnen und dann Konfidenzintervalle für längerfristige Prognosen durch Addition und Subtraktion von Vielfachen der entsprechenden Standardabweichung aufbauen. Wenn wir einen 9-fach einfachen gleitenden Durchschnitt versuchen, bekommen wir noch glattere Prognosen und mehr von einem nacheilenden Effekt: Das Durchschnittsalter beträgt nun 5 Perioden ((91) 2). Wenn wir einen 19-fachen gleitenden Durchschnitt nehmen, steigt das Durchschnittsalter auf 10: Beachten Sie, dass die Prognosen in der Tat hinter den Wendepunkten um etwa 10 Perioden zurückbleiben. Welche Menge an Glättung ist am besten für diese Serie Hier ist eine Tabelle, die ihre Fehlerstatistik vergleicht, auch einen 3-Term-Durchschnitt: Modell C, der 5-fache gleitende Durchschnitt, ergibt den niedrigsten Wert von RMSE um einen kleinen Marge über die 3 - term und 9-term Mittelwerte, und ihre anderen Statistiken sind fast identisch. So können wir bei Modellen mit sehr ähnlichen Fehlerstatistiken wählen, ob wir ein wenig mehr Reaktionsfähigkeit oder ein wenig mehr Glätte in den Prognosen bevorzugen würden. (Zurück zum Anfang der Seite) Browns Einfache Exponential-Glättung (exponentiell gewichteter gleitender Durchschnitt) Das oben beschriebene einfache gleitende Durchschnittsmodell hat die unerwünschte Eigenschaft, dass es die letzten k-Beobachtungen gleichermaßen behandelt und alle vorherigen Beobachtungen völlig ignoriert. Intuitiv sollten vergangene Daten in einer allmählicheren Weise abgezinst werden - zum Beispiel sollte die jüngste Beobachtung ein wenig mehr Gewicht als die 2. jüngste, und die 2. jüngsten sollte ein wenig mehr Gewicht als die 3. jüngsten bekommen, und bald. Das einfache exponentielle Glättungsmodell (SES) erreicht dies. Sei 945 eine quotsmoothing constantquot (eine Zahl zwischen 0 und 1). Eine Möglichkeit, das Modell zu schreiben, besteht darin, eine Reihe L zu definieren, die den gegenwärtigen Pegel (d. h. den lokalen Mittelwert) der Reihe repräsentiert, wie er von den Daten bis zur Gegenwart geschätzt wird. Der Wert von L zum Zeitpunkt t wird rekursiv aus seinem eigenen vorherigen Wert wie folgt berechnet: Somit ist der aktuelle geglättete Wert eine Interpolation zwischen dem vorherigen geglätteten Wert und der aktuellen Beobachtung, wobei 945 die Nähe des interpolierten Wertes auf den letzten Wert steuert Überwachung. Die Prognose für die nächste Periode ist einfach der aktuell geglättete Wert: Gleichermaßen können wir die nächste Prognose direkt in Bezug auf vorherige Prognosen und frühere Beobachtungen in einer der folgenden gleichwertigen Versionen ausdrücken. In der ersten Version ist die Prognose eine Interpolation zwischen vorheriger Prognose und vorheriger Beobachtung: In der zweiten Version wird die nächste Prognose erhalten, indem man die vorherige Prognose in Richtung des vorherigen Fehlers um einen Bruchteil 945 anpasst Zeit t. In der dritten Version ist die Prognose ein exponentiell gewichteter (dh diskontierter) gleitender Durchschnitt mit Rabattfaktor 1-945: Die Interpolationsversion der Prognoseformel ist am einfachsten zu bedienen, wenn man das Modell auf einer Tabellenkalkulation implementiert: Es passt in eine Einzelzelle und enthält Zellreferenzen, die auf die vorherige Prognose, die vorherige Beobachtung und die Zelle hinweisen, in der der Wert von 945 gespeichert ist. Beachten Sie, dass bei 945 1 das SES-Modell einem zufälligen Walk-Modell entspricht (ohne Wachstum). Wenn 945 0 ist, entspricht das SES-Modell dem mittleren Modell, vorausgesetzt, dass der erste geglättete Wert gleich dem Mittelwert ist. (Zurück zum Anfang der Seite) Das Durchschnittsalter der Daten in der einfach-exponentiellen Glättungsprognose beträgt 1 945 gegenüber dem Zeitraum, für den die Prognose berechnet wird. (Das soll nicht offensichtlich sein, aber es kann leicht durch die Auswertung einer unendlichen Reihe gezeigt werden.) Die einfache gleitende Durchschnittsprognose neigt daher dazu, hinter den Wendepunkten um etwa 1 945 Perioden zurückzukehren. Zum Beispiel, wenn 945 0,5 die Verzögerung 2 Perioden beträgt, wenn 945 0,2 die Verzögerung 5 Perioden beträgt, wenn 945 0,1 die Verzögerung 10 Perioden und so weiter ist. Für ein gegebenes Durchschnittsalter (d. H. Verzögerung) ist die Prognose der einfachen exponentiellen Glättung (SES) der einfachen gleitenden Durchschnitts - (SMA) - Prognose etwas überlegen, da sie die jüngste Beobachtung - Es ist etwas mehr auffallend auf Veränderungen, die in der jüngsten Vergangenheit auftreten. Zum Beispiel hat ein SMA-Modell mit 9 Begriffen und einem SES-Modell mit 945 0,2 beide ein Durchschnittsalter von 5 für die Daten in ihren Prognosen, aber das SES-Modell setzt mehr Gewicht auf die letzten 3 Werte als das SMA-Modell und am Gleichzeitig ist es genau 8220forget8221 über Werte mehr als 9 Perioden alt, wie in dieser Tabelle gezeigt: Ein weiterer wichtiger Vorteil des SES-Modells gegenüber dem SMA-Modell ist, dass das SES-Modell einen Glättungsparameter verwendet, der stufenlos variabel ist, so dass er leicht optimiert werden kann Indem ein Quotsolverquot-Algorithmus verwendet wird, um den mittleren quadratischen Fehler zu minimieren. Der optimale Wert von 945 im SES-Modell für diese Baureihe ergibt sich auf 0,2961, wie hier gezeigt: Das Durchschnittsalter der Daten in dieser Prognose beträgt 10.2961 3.4 Perioden, was ähnlich ist wie bei einem 6-fach einfach gleitenden Durchschnitt. Die Langzeitprognosen des SES-Modells sind eine horizontale Gerade. Wie im SMA-Modell und dem zufälligen Walk-Modell ohne Wachstum. Allerdings ist zu beachten, dass die von Statgraphics berechneten Konfidenzintervalle nun in einer vernünftig aussehenden Weise abweichen und dass sie wesentlich schmaler sind als die Konfidenzintervalle für das zufällige Spaziergangmodell. Das SES-Modell geht davon aus, dass die Serie etwas vorhersehbar ist als das zufällige Spaziergangmodell. Ein SES-Modell ist eigentlich ein Spezialfall eines ARIMA-Modells. So bietet die statistische Theorie der ARIMA-Modelle eine fundierte Grundlage für die Berechnung von Konfidenzintervallen für das SES-Modell. Insbesondere ist ein SES-Modell ein ARIMA-Modell mit einer nicht-seasonalen Differenz, einem MA (1) Term und keinem konstanten Term. Ansonsten bekannt als ein quotARIMA (0,1,1) Modell ohne constantquot. Der MA (1) - Koeffizient im ARIMA-Modell entspricht der Menge 1-945 im SES-Modell. Zum Beispiel, wenn man ein ARIMA (0,1,1) Modell ohne Konstante an die hier analysierte Serie passt, ergibt sich der geschätzte MA (1) Koeffizient 0,7029, was fast genau ein minus 0.2961 ist. Es ist möglich, die Annahme eines nicht-null konstanten linearen Trends zu einem SES-Modell hinzuzufügen. Um dies zu tun, geben Sie einfach ein ARIMA-Modell mit einer nicht-seasonalen Differenz und einem MA (1) Begriff mit einer Konstante, d. h. ein ARIMA (0,1,1) Modell mit konstant. Die langfristigen Prognosen werden dann einen Trend haben, der dem durchschnittlichen Trend entspricht, der über den gesamten Schätzungszeitraum beobachtet wird. Sie können dies nicht in Verbindung mit saisonaler Anpassung tun, da die saisonalen Anpassungsoptionen deaktiviert sind, wenn der Modelltyp auf ARIMA eingestellt ist. Allerdings können Sie einen konstanten langfristigen exponentiellen Trend zu einem einfachen exponentiellen Glättungsmodell (mit oder ohne saisonale Anpassung) hinzufügen, indem Sie die Inflationsanpassungsoption im Vorhersageverfahren verwenden. Die jeweilige Quotenquote (prozentuale Wachstumsrate) pro Periode kann als Steigungskoeffizient in einem linearen Trendmodell geschätzt werden, das an die Daten in Verbindung mit einer natürlichen Logarithmus-Transformation angepasst ist, oder sie kann auf anderen, unabhängigen Informationen über langfristige Wachstumsaussichten basieren . (Zurück zum Seitenanfang) Browns Linear (dh Double) Exponentielle Glättung Die SMA Modelle und SES Modelle gehen davon aus, dass es in den Daten keinen Trend gibt (was in der Regel ok oder zumindest nicht so schlecht ist für 1- Schritt-voraus Prognosen, wenn die Daten relativ laut sind), und sie können modifiziert werden, um einen konstanten linearen Trend wie oben gezeigt zu integrieren. Was ist mit kurzfristigen Trends Wenn eine Serie eine unterschiedliche Wachstumsrate oder ein zyklisches Muster zeigt, das sich deutlich gegen den Lärm auszeichnet, und wenn es notwendig ist, mehr als einen Zeitraum voraus zu prognostizieren, dann könnte auch eine Einschätzung eines lokalen Trends erfolgen Ein Problem. Das einfache exponentielle Glättungsmodell kann verallgemeinert werden, um ein lineares exponentielles Glättungsmodell (LES) zu erhalten, das lokale Schätzungen sowohl von Ebene als auch von Trend berechnet. Das einfachste zeitveränderliche Trendmodell ist das lineare, exponentielle Glättungsmodell von Browns, das zwei verschiedene geglättete Serien verwendet, die zu unterschiedlichen Zeitpunkten zentriert sind. Die Prognoseformel basiert auf einer Extrapolation einer Linie durch die beiden Zentren. (Eine ausgefeiltere Version dieses Modells, Holt8217s, wird unten diskutiert.) Die algebraische Form des linearen exponentiellen Glättungsmodells von Brown8217s, wie das des einfachen exponentiellen Glättungsmodells, kann in einer Anzahl von verschiedenen, aber äquivalenten Formen ausgedrückt werden. Die quadratische Form dieses Modells wird gewöhnlich wie folgt ausgedrückt: Sei S die einfach geglättete Reihe, die durch Anwendung einer einfachen exponentiellen Glättung auf die Reihe Y erhalten wird. Das heißt, der Wert von S in der Periode t ist gegeben durch: (Erinnern Sie sich, dass unter einfachem Exponentielle Glättung, das wäre die Prognose für Y in der Periode t1.) Dann sei Squot die doppelt geglättete Reihe, die durch Anwendung einer einfachen exponentiellen Glättung (mit demselben 945) auf die Reihe S erhalten wird: Schließlich ist die Prognose für Y tk. Für irgendwelche kgt1 ist gegeben durch: Dies ergibt e 1 0 (d. h. Cheat ein Bit, und lassen Sie die erste Prognose gleich der tatsächlichen ersten Beobachtung) und e 2 Y 2 8211 Y 1. Nach denen Prognosen mit der obigen Gleichung erzeugt werden. Dies ergibt die gleichen angepassten Werte wie die Formel auf Basis von S und S, wenn diese mit S 1 S 1 Y 1 gestartet wurden. Diese Version des Modells wird auf der nächsten Seite verwendet, die eine Kombination aus exponentieller Glättung mit saisonaler Anpassung darstellt. Holt8217s Lineare Exponential-Glättung Brown8217s LES-Modell berechnet lokale Schätzungen von Level und Trend durch Glättung der aktuellen Daten, aber die Tatsache, dass es dies mit einem einzigen Glättungsparameter macht, legt eine Einschränkung auf die Datenmuster, die es passen kann: das Niveau und den Trend Dürfen nicht zu unabhängigen Preisen variieren. Holt8217s LES-Modell adressiert dieses Problem, indem es zwei Glättungskonstanten einschließt, eine für die Ebene und eine für den Trend. Zu jeder Zeit t, wie in Brown8217s Modell, gibt es eine Schätzung L t der lokalen Ebene und eine Schätzung T t der lokalen Trend. Hier werden sie rekursiv aus dem Wert von Y, der zum Zeitpunkt t beobachtet wurde, und den vorherigen Schätzungen des Niveaus und des Tendenzes durch zwei Gleichungen berechnet, die eine exponentielle Glättung für sie separat anwenden. Wenn der geschätzte Pegel und der Trend zum Zeitpunkt t-1 L t82091 und T t-1 sind. Dann ist die Prognose für Y tshy, die zum Zeitpunkt t-1 gemacht worden wäre, gleich L t-1 T t-1. Wenn der Istwert beobachtet wird, wird die aktualisierte Schätzung des Pegels rekursiv durch Interpolation zwischen Y tshy und dessen Prognose L t-1 T t-1 unter Verwendung von Gewichten von 945 und 1 945 berechnet. Die Änderung des geschätzten Pegels, Nämlich L t 8209 L t82091. Kann als eine laute Messung des Trends zum Zeitpunkt t interpretiert werden. Die aktualisierte Schätzung des Trends wird dann rekursiv durch Interpolation zwischen L t 8209 L t82091 und der vorherigen Schätzung des Trends T t-1 berechnet. Mit Gewichten von 946 und 1-946: Die Interpretation der Trend-Glättungs-Konstante 946 ist analog zu der Niveau-Glättungs-Konstante 945. Modelle mit kleinen Werten von 946 gehen davon aus, dass sich der Trend nur sehr langsam über die Zeit ändert, während Modelle mit Größer 946 nehmen an, dass es sich schneller ändert. Ein Modell mit einer großen 946 glaubt, dass die ferne Zukunft sehr unsicher ist, denn Fehler in der Trendschätzung werden bei der Prognose von mehr als einer Periode sehr wichtig. (Zurück zum Seitenanfang) Die Glättungskonstanten 945 und 946 können in der üblichen Weise durch Minimierung des mittleren quadratischen Fehlers der 1-Schritt-voraus-Prognosen geschätzt werden. Wenn dies in Statgraphics geschieht, ergeben sich die Schätzungen auf 945 0.3048 und 946 0,008. Der sehr kleine Wert von 946 bedeutet, dass das Modell eine sehr geringe Veränderung des Trends von einer Periode zur nächsten einnimmt, so dass dieses Modell grundsätzlich versucht, einen langfristigen Trend abzuschätzen. In Analogie zum Begriff des Durchschnittsalters der Daten, die bei der Schätzung der lokalen Ebene der Serie verwendet wird, ist das Durchschnittsalter der Daten, die bei der Schätzung des lokalen Trends verwendet wird, proportional zu 1 946, wenn auch nicht genau gleich . In diesem Fall stellt sich heraus, dass es sich um 10.006 125 handelt. Dies ist eine sehr genaue Zahl, da die Genauigkeit der Schätzung von 946 wirklich 3 Dezimalstellen ist, aber sie ist von der gleichen allgemeinen Größenordnung wie die Stichprobengröße von 100 Dieses Modell ist durchschnittlich über eine ganze Menge Geschichte bei der Schätzung der Trend. Die prognostizierte Handlung unten zeigt, dass das LES-Modell einen geringfügig größeren lokalen Trend am Ende der Serie schätzt als der im SEStrend-Modell geschätzte konstante Trend. Auch der Schätzwert von 945 ist fast identisch mit dem, der durch die Anpassung des SES-Modells mit oder ohne Trend erhalten wird. Das ist also fast das gleiche Modell. Nun, sehen diese aus wie vernünftige Prognosen für ein Modell, das soll ein lokaler Trend schätzen Wenn Sie diese Handlung, es sieht so aus, als ob der lokale Trend hat sich nach unten am Ende der Serie Was ist passiert Die Parameter dieses Modells Wurden durch die Minimierung der quadratischen Fehler von 1-Schritt-voraus Prognosen, nicht längerfristige Prognosen geschätzt, in welchem Fall der Trend doesn8217t machen einen großen Unterschied. Wenn alles, was Sie suchen, sind 1-Schritt-vor-Fehler, sehen Sie nicht das größere Bild der Trends über (sagen) 10 oder 20 Perioden. Um dieses Modell mehr im Einklang mit unserer Augapfel-Extrapolation der Daten zu erhalten, können wir die Trend-Glättung konstant manuell anpassen, so dass es eine kürzere Grundlinie für Trendschätzung verwendet. Zum Beispiel, wenn wir uns dafür entscheiden, 946 0,1 zu setzen, dann ist das Durchschnittsalter der Daten, die bei der Schätzung des lokalen Trends verwendet werden, 10 Perioden, was bedeutet, dass wir den Trend über die letzten 20 Perioden oder so vermitteln. Hier8217s, was die Prognose Handlung aussieht, wenn wir 946 0,1 gesetzt, während halten 945 0,3. Das sieht für diese Serie intuitiv vernünftig aus, obwohl es wahrscheinlich gefährlich ist, diesen Trend in Zukunft mehr als 10 Perioden zu extrapolieren. Was ist mit den Fehlerstatistiken Hier ist ein Modellvergleich für die beiden oben gezeigten Modelle sowie drei SES-Modelle. Der optimale Wert von 945 für das SES-Modell beträgt etwa 0,3, aber es werden ähnliche Ergebnisse (mit etwas mehr oder weniger Ansprechverhalten) mit 0,5 und 0,2 erhalten. (A) Holts linear exp. Glättung mit alpha 0.3048 und beta 0.008 (B) Holts linear exp. Glättung mit alpha 0,3 und beta 0,1 (C) Einfache exponentielle Glättung mit alpha 0,5 (D) Einfache exponentielle Glättung mit alpha 0,3 (E) Einfache exponentielle Glättung mit alpha 0.2 Ihre Stats sind nahezu identisch, so dass wir wirklich die Wahl treffen können Von 1-Schritt-voraus Prognosefehler innerhalb der Datenprobe Wir müssen auf andere Überlegungen zurückgreifen. Wenn wir stark davon überzeugt sind, dass es sinnvoll ist, die aktuelle Trendschätzung auf das, was in den letzten 20 Perioden passiert ist, zu stützen, so können wir einen Fall für das LES-Modell mit 945 0,3 und 946 0,1 machen. Wenn wir agnostisch darüber sein wollen, ob es einen lokalen Trend gibt, dann könnte eines der SES-Modelle leichter zu erklären sein und würde auch mehr Mittelwert der Prognosen für die nächsten 5 oder 10 Perioden geben. (Rückkehr nach oben) Welche Art von Trend-Extrapolation ist am besten: horizontal oder linear Empirische Evidenz deutet darauf hin, dass, wenn die Daten bereits für die Inflation angepasst wurden (falls erforderlich), dann kann es unklug sein, kurzfristig linear zu extrapolieren Trends sehr weit in die Zukunft. Trends, die heute deutlich werden, können in Zukunft aufgrund unterschiedlicher Ursachen wie Produktveralterung, erhöhter Konkurrenz und zyklischer Abschwünge oder Aufschwünge in einer Branche nachlassen. Aus diesem Grund führt eine einfache, exponentielle Glättung oftmals zu einem besseren Out-of-Sample, als es sonst zu erwarten wäre, trotz der quadratischen horizontalen Trend-Extrapolation. Gedämpfte Trendmodifikationen des linearen exponentiellen Glättungsmodells werden auch in der Praxis häufig verwendet, um eine Note des Konservatismus in seine Trendprojektionen einzuführen. Das LES-Modell mit gedämpftem Trend kann als Spezialfall eines ARIMA-Modells, insbesondere eines ARIMA (1,1,2) - Modells, implementiert werden. Es ist möglich, Konfidenzintervalle um Langzeitprognosen zu berechnen, die durch exponentielle Glättungsmodelle erzeugt werden, indem sie sie als Sonderfälle von ARIMA-Modellen betrachten. (Vorsicht: Nicht alle Software berechnet die Konfidenzintervalle für diese Modelle korrekt.) Die Breite der Konfidenzintervalle hängt von (i) dem RMS-Fehler des Modells ab, (ii) der Art der Glättung (einfach oder linear) (iii) der Wert (S) der Glättungskonstante (n) und (iv) die Anzahl der voraussichtlichen Perioden, die Sie prognostizieren. Im Allgemeinen werden die Intervalle schneller ausgebreitet als 945 im SES-Modell größer und sie breiten sich viel schneller aus, wenn lineare statt einfache Glättung verwendet wird. Dieses Thema wird im ARIMA-Modellteil der Notizen weiter erörtert. (Zurück zum Seitenanfang) Warum gleitende Mittelstrategien riskant sind Dies ist die zweite in einer dreiteiligen Serie. Lesen Sie hier Teil 1. CHAPEL HILL, N. C. (MarketWatch) Durchgehende Strategien sind riskant. Das ist die sakrilegische Behauptung, die ich in meiner Spalte vorgestellt habe, die Anfang dieser Woche erschien, auf der Grundlage einer eingehenden Forschung, die ich in den vergangenen Monaten in die Rückkehr verschiedener gleitender Mittelstrategien führte. Wie in dieser ersten Spalte dieser dreiteiligen Reihe versprochen, ist hier eine ausführlichere Diskussion über jede der vier allgemeinen Schlussfolgerungen, die ich erreicht habe. Finding 1: Auch die besten Moving-Average-Strategien nicht immer arbeiten Um zu verstehen, warum Moving-Average-Strategien sind riskant, ist es wichtig zu verstehen, dass theres mehr als eine Möglichkeit, Risiko zu definieren. Entsprechend der traditionellen akademischen Definition des Risikos als Volatilität sind gleitende Durchschnittsstrategien in der Tat weniger riskant als der Markt. Aber auch eine andere Art von Risiko, mit zu tun, wie lange die Strategie unter Wasser sein kann. Und wenn man so betrachtet, sind die gleitenden Mittelstrategien ziemlich riskant: Selbst unter idealen Bedingungen sind die besten gleitenden Durchschnittsstrategien den Markt für längere Zeiträume, die manchmal ein paar Jahrzehnte dauern, noch immer unterdurchschnittlich. Betrachten Sie die 200-Tage gleitenden Durchschnitt, vielleicht die am weitesten verbreitete Version. Bei der Anwendung auf den SampP 500 Index SPX, 0,15 und bei der Verwendung in Verbindung mit einem 5 Handelsumschlag, war diese Strategie eine der wenigen, die mehr Geld als der Markt seit den späten 1920er Jahren auch nach Provisionen. (Ich werde die Handelsumschläge in einem Augenblick ausführlicher erörtern.) Diese besondere Strategie verbrachte dennoch mehr als die Hälfte der Zeit in den letzten 80 Jahren hinter Buy-and-Hold, wie in der folgenden Tabelle zusammengefasst. Beachten Sie sorgfältig, dass diese deprimierenden Ergebnisse gelten für eine der profitabelsten einer der unzähligen gleitenden Durchschnitt Strategien, die ich studiert. Von Perioden dieser Länge untersucht (auf einer rollenden Kalender-Jahr-Basis), in denen gleitende durchschnittliche Strategie weniger Geld als Markt selbst, in denen gleitende durchschnittliche Strategien Sharpe Ratio war weniger als Märkte Die Frage, um sich zu fragen, wie Sie diese Ergebnisse zu lesen: Wie wahrscheinlich Sind Sie mit einer Markt-Timing-Strategie zu halten, die 20, 10 oder sogar fünf Jahre ohne den Markt zu schlagen. Meine Ergebnisse zeigen auf einen potenziell noch ernsteren Einwand gegen gleitende durchschnittliche Strategien: Die meisten der zahlreichen gleitenden Mittelstrategien habe ich getestet Schlagen den Markt im Laufe des letzten Jahrhunderts haben es seit 1990 unterdurchschnittlich, und dies kann mehr als nur eine jener periodischen Perioden, in denen gleitende durchschnittliche Strategien kämpfen, um zu halten. Blake LeBaron, ein Finanzprofessor an der Brandies-Universität, vermutet, dass preiswertere Wege zum Handel in und aus dem Markt verursacht haben, erhöhte die Zahl der Investoren, die den gleitenden durchschnittlichen Strategien folgen, und das wiederum hat ihre Gewinne veranlasst und sogar verschwinden letzte Jahrzehnte. Hinzufügen von Glaubwürdigkeit an Prof. LeBarons Hypothese ist, dass auch ab Anfang der 90er Jahre gleitende Mittelstrategien auf dem Fremdwährungsmarkt aufhörten. Finden von 2: Provisionen sabotieren sogar die besten Strategien, so dass die Transaktionshäufigkeit entscheidend ist. Die meisten früheren Studien der bewegten Durchschnitte gaben an, dass ein Investor ohne Provisionen oder andere Transaktionskosten handeln könnte. Sobald Sie diese unrealistische Annahme loswerden, verbleiben die meisten gleitend-durchschnittlichen Strategien einen Kauf und halten durch erhebliche Beträge. Das gilt besonders für flüchtige Märkte, wenn viele der gleitenden Mittelstrategien, vor allem jene, die auf eine kurze durchschnittliche Länge angewiesen sind, nicht selten zahlreiche Signale pro Jahr erzeugen. Bestimmen, was ist eine faire Provision ist nicht einfach, natürlich. Es lohnt sich zu erinnern, dass für die meisten des letzten Jahrhunderts keine börsengehandelten Fonds zur Verfügung standen, die es dem Investor ermöglichten, die 30 Dow-Aktien in einem Schlag zu kaufen, viel weniger die mehrere hundert Aktien, die damals Teil des SampP Composite Index waren. Es gab auch keine Geldmarktfonds, in denen Sie sofort und leicht den Gelderlös von Verkäufen parken konnten. Darüber hinaus war es nicht bis zum 1. Mai 1975 (der Urknall), dass die Vermittlungsprovisionen zuvor entrechnet wurden, diese Provisionen wurden fest und erheblich. Bei der Berechnung, wie groß ein Hit war, den die gleitenden Mittelstrategien wegen der Provisionen einnahmen, ging ich davon aus, dass für jeden Kauf oder Verkauf vor dem Big Bang 0.5 jeder Weg bis Ende 1999 und je 0.1 jeglicher Weg bezahlt werden musste . Twitter: Wie 1.000 investiert in tech kann sich auszahlen Mit Twitter39s gangbusters IPO am Donnerstag, wie viel Geld hätten Sie mit 1.000 machen können, wenn Sie zum Startpreis eintrafen Was andere Tech IPO39s haben sich gut bezahlt Wie großartig WSJ39s Jason Bellini hat TheShortAnswer. Bild: Assoziierte Presse Eine Möglichkeit zu schätzen, wie entscheidend die Transaktionskosten sind, um diese Strategien zu bewerten, ist die folgende: Bei der Annahme, dass keine Transaktionskosten sind, haben viele der unzähligen gleitenden Mittelstrategien, die ich überwacht habe, den Markt über den gesamten Zeitraum, für den Daten, Waren verfügbar. Allerdings, bei der Einbeziehung der Transaktionskosten, praktisch alle von ihnen lag. Daher ist die Reduzierung der Transaktionsfrequenz für jede gleitende Durchschnittsstrategie absolut entscheidend. Zwar gibt es mehr als eine Möglichkeit, dies zu tun, vielleicht die einfachste und am häufigsten ist, einen so genannten Umschlag zu verwenden. Diese Methode ermöglicht es dem Anleger, einen beliebigen Betrag zu wählen, den der Marktindex über oder über den gleitenden Durchschnitt bewegen muss, um eine Transaktion zu generieren. Zum Beispiel, wenn Sie einen 1 Umschlag verwenden und bereits auf dem Markt sind, dann muss der Index mehr als 1 unter dem gleitenden Durchschnitt fallen, um einen Umzug in Bargeld zu generieren. Umgekehrt, wenn Sie in bar sind, dann werden Sie nur wieder auf den Markt zurückkehren, wenn der Index auf mindestens 1 über seinem gleitenden Durchschnitt steigt. Ich habe viele verschiedene Umschlaggrößen getestet. In fast allen Fällen stellte ich fest, dass der optimal dimensionierte Umschlag 5 ist. Bei der Verwendung des 200-Tage-gleitenden Durchschnitts für den Dow sank beispielsweise die Transaktionsfrequenz von durchschnittlich sechs pro Jahr (oder einmal alle zwei Monate im Durchschnitt) ) Zu nur einmal pro Jahr, was zu einem deutlich höheren Rücklaufnetz von Provisionen führte. Finding 3: Sans Provisionen, kürzere MAs schlagen längerfristige MAs Wenn Provisionen kein Faktor waren, würden kürzere Bewegungsdurchschnitte im Allgemeinen vorzuziehen sein: Meine Studien zeigten, dass die Trans-Transaktions-Kosten-Performance in der Regel abnimmt, während Sie zunehmen Die Länge des gleitenden Durchschnitts. Doch nach der Einbeziehung einer realistischen Provisionsannahme kamen die längerfristigen bewegten Durchschnitte voran. Auch bei der Verwendung von Umschlägen zur Reduzierung der Transaktionshäufigkeit für kurzfristige gleitende Durchschnitte kamen die längerfristigen gleitenden Mittelstrategien im Allgemeinen voran. Beachten Sie jedoch sorgfältig, dass es keine optimale Länge des gleitenden Durchschnitts gibt, die Sie verwenden sollten. Norman Fosback, Redakteur des Fosbacks Fund Forecaster und ehemaliger Leiter des Instituts für Ökonometrische Forschung, legte es so in seinem Lehrbuch Stock Market Logik: Es gibt keine magischen Zahlen im Trend nach. Einige gleitende durchschnittliche Längen können in der Vergangenheit am besten gearbeitet haben, aber schließlich musste etwas in der Vergangenheit am besten funktionieren und durch das Testen alles Mögliche, wie könnte man helfen, aber es zu finden. Es sollte eine Grundvoraussetzung für jeden gleitenden durchschnittlichen Trend nach dem System sein, dass praktisch alle gleitenden durchschnittlichen Längen erfolgreich in einem größeren oder geringeren Grad voraussagen. Wenn nur ein oder zwei Längen arbeiten, sind die Chancen hoch, als erfolgreiche Ergebnisse durch Zufall erhalten wurden. Finding 4: Nicht alle Indizes sind gleich, wenn es darum geht, gleitende durchschnittliche Strategien Sie wahrscheinlich denken, dass es nicht wichtig, welche Markt-Index Sie verwenden, wenn die Berechnung der gleitenden Durchschnitt. Aber du wärst falsch: Es gibt deutliche Diskrepanzen in den Renditen von gleitenden durchschnittlichen Strategien, je nachdem, ob du den Dow, SampP 500 oder den Nasdaq benutzt, um die Kauf - und Verkaufssignale zu generieren. Betrachten Sie den 200-Tage-Gleitendurchschnitt, der mit einer Hülle gekoppelt ist. Bei der Ausrichtung dieser Strategie auf die Dow Industrials hat es seit 1990 100 getrennte Transaktionen für durchschnittlich vier pro Jahr geführt. Doch bei der Anwendung auf den SampP 500 hat diese ansonsten identische Strategie zu 68 Transaktionen im Durchschnitt von weniger als drei pro Jahr geführt. Auf risikoadjustierter Basis hat diese Strategie im Falle des SampP 500, aber nicht des Dow, einen Buy-and-Hold geschlagen. Weite Diskrepanzen wie diese kamen oft in meiner Forschung. Fosbacks Vorsicht Hinweis, dass ich oben erwähnt ist hier auch sehr wichtig. Nate Vernon ist Senior an der University of Rochester mit Schwerpunkt Wirtschaftsfinanzierung. Im vergangenen Sommer war er ein Praktikant für den Hulbert Financial Digest. Er ist auch Mitglied der Basketballmannschaft an der University of Rochester. Copyright copy2017 MarketWatch, Inc. Alle Rechte vorbehalten. Intraday-Daten von SIX Financial Information zur Verfügung gestellt und unterliegen den Nutzungsbedingungen. Historische und aktuelle End-of-Day-Daten von SIX Financial Information zur Verfügung gestellt. Intraday-Daten verzögert je Austauschanforderungen. SampPDow Jones Indizes (SM) von Dow Jones amp Company, Inc. Alle Zitate sind in der örtlichen Börse Zeit. Echtzeit-Enddaten von NASDAQ zur Verfügung gestellt. Mehr Informationen über NASDAQ gehandelte Symbole und ihre aktuelle finanzielle Status. Intraday-Daten verzögert 15 Minuten für Nasdaq und 20 Minuten für andere Börsen. SampPDow Jones Indizes (SM) von Dow Jones amp Company, Inc. SEHK Intraday Daten werden von SIX Financial Information zur Verfügung gestellt und sind mindestens 60 Minuten verspätet. Alle Zitate sind in der örtlichen Börsenzeit. keine Ergebnisse gefunden
No comments:
Post a Comment