Sunday, 15 October 2017

Moving Average Typ Exponentiell


Exponentieller Moving Average - EMA BREAKING DOWN Exponentieller Moving Average - EMA Die 12- und 26-Tage-EMAs sind die beliebtesten Kurzzeitdurchschnitte und sie werden verwendet, um Indikatoren wie die gleitende durchschnittliche Konvergenzdivergenz (MACD) und den prozentualen Preisoszillator zu erzeugen (PPO). Im Allgemeinen werden die 50- und 200-Tage-EMAs als Signale von Langzeittrends verwendet. Händler, die technische Analysen verwenden, finden bewegte Durchschnitte sehr nützlich und aufschlussreich, wenn sie richtig angewendet werden, aber schaffen Verwüstung, wenn sie unsachgemäß verwendet oder falsch interpretiert werden. Alle gleitenden Mittelwerte, die üblicherweise in der technischen Analyse verwendet werden, sind ihrer Natur nach hintere Indikatoren. Folglich sollten die Schlussfolgerungen, die aus der Anwendung eines gleitenden Durchschnitts auf eine bestimmte Marktkarte gezogen werden, darin bestehen, eine Marktbewegung zu bestätigen oder ihre Stärke anzugeben. Sehr oft, bis zu der Zeit, in der eine gleitende durchschnittliche Indikatorlinie eine Änderung vorgenommen hat, um einen bedeutenden Marktzugang zu reflektieren, ist der optimale Markteintritt bereits vergangen. Eine EMA dient dazu, dieses Dilemma zu einem gewissen Grad zu lindern. Weil die EMA-Berechnung mehr Gewicht auf die neuesten Daten setzt, umarmt sie die Preisaktion etwas fester und reagiert daher schneller. Dies ist wünschenswert, wenn eine EMA verwendet wird, um ein Handelseingangssignal abzuleiten. Interpretation der EMA Wie alle gleitenden durchschnittlichen Indikatoren sind sie für die Trends in den Märkten besser geeignet. Wenn der Markt in einem starken und anhaltenden Aufwärtstrend ist. Die EMA-Indikatorlinie zeigt auch einen Aufwärtstrend und umgekehrt für einen Down-Trend. Ein wachsamer Trader wird nicht nur auf die Richtung der EMA-Linie achten, sondern auch auf das Verhältnis der Änderungsrate von einem Bar zum nächsten. Zum Beispiel, da die Preiswirkung eines starken Aufwärtstrends beginnt zu glätten und umzukehren, beginnt die EMAs-Änderungsrate von einem Bar zum nächsten zu verkleinern, bis zu diesem Zeitpunkt die Indikatorlinie abflacht und die Änderungsrate Null ist. Wegen der nacheilenden Wirkung, bis zu diesem Punkt, oder sogar ein paar Takte vorher, sollte die Preisaktion bereits umgekehrt sein. Daraus folgt, dass die Beobachtung einer konsequenten Abnahme der Änderungsrate der EMA selbst als Indikator verwendet werden könnte, der dem Dilemma, das durch die nacheilende Wirkung der sich bewegenden Mittelwerte verursacht wurde, weiter entgegenwirken könnte. Gemeinsame Verwendungen der EMA EMAs werden häufig in Verbindung mit anderen Indikatoren verwendet, um signifikante Marktbewegungen zu bestätigen und ihre Gültigkeit zu beurteilen. Für Händler, die intraday und schnell bewegte Märkte handeln, ist die EMA mehr anwendbar. Häufig verwenden Händler EMAs, um eine Handelsvorspannung zu bestimmen. Zum Beispiel, wenn eine EMA auf einer Tageskarte einen starken Aufwärtstrend zeigt, kann eine Intraday-Trader-Strategie nur von der langen Seite auf einem Intraday-Chart handeln. Einführung in ARIMA: Nicht-Seasonal-Modelle ARIMA (p, d, q) Prognose Gleichung : ARIMA-Modelle sind in der Theorie die allgemeinste Klasse von Modellen für die Prognose einer Zeitreihe, die gemacht werden kann, um 8220stationary8221 durch Differenzierung (falls erforderlich), vielleicht in Verbindung mit nichtlinearen Transformationen wie Protokollierung oder Deflating (falls erforderlich). Eine zufällige Variable, die eine Zeitreihe ist, ist stationär, wenn ihre statistischen Eigenschaften alle über die Zeit konstant sind. Eine stationäre Serie hat keinen Trend, ihre Variationen um ihre Mittel haben eine konstante Amplitude, und es wackelt in einer konsistenten Weise. D. h. seine kurzzeitigen zufälligen Zeitmuster sehen immer in einem statistischen Sinn gleich aus. Die letztere Bedingung bedeutet, daß ihre Autokorrelationen (Korrelationen mit ihren eigenen vorherigen Abweichungen vom Mittelwert) über die Zeit konstant bleiben oder äquivalent, daß sein Leistungsspektrum über die Zeit konstant bleibt. Eine zufällige Variable dieses Formulars kann (wie üblich) als eine Kombination von Signal und Rauschen betrachtet werden, und das Signal (wenn man offensichtlich ist) könnte ein Muster der schnellen oder langsamen mittleren Reversion oder sinusförmigen Oszillation oder eines schnellen Wechsels im Zeichen sein , Und es könnte auch eine saisonale Komponente haben. Ein ARIMA-Modell kann als 8220filter8221 betrachtet werden, das versucht, das Signal vom Rauschen zu trennen, und das Signal wird dann in die Zukunft extrapoliert, um Prognosen zu erhalten. Die ARIMA-Prognosegleichung für eine stationäre Zeitreihe ist eine lineare (d. h. regressionstypische) Gleichung, bei der die Prädiktoren aus Verzögerungen der abhängigen Variablen und Verzögerungen der Prognosefehler bestehen. Das heißt: vorhergesagter Wert von Y eine Konstante undeiner gewichteten Summe von einem oder mehreren neueren Werten von Y und einer gewichteten Summe von einem oder mehreren neueren Werten der Fehler. Wenn die Prädiktoren nur aus verzögerten Werten von Y bestehen, ist es ein reines autoregressives Modell (8220 selbst-regressed8221), das nur ein Spezialfall eines Regressionsmodells ist und mit Standardregressionssoftware ausgestattet werden kann. Zum Beispiel ist ein autoregressives (8220AR (1) 8221) Modell erster Ordnung für Y ein einfaches Regressionsmodell, bei dem die unabhängige Variable nur Y um eine Periode (LAG (Y, 1) in Statgraphics oder YLAG1 in RegressIt hinterlässt). Wenn einige der Prädiktoren die Fehler der Fehler sind, ist es ein ARIMA-Modell, es ist kein lineares Regressionsmodell, denn es gibt keine Möglichkeit, 828last period8217s error8221 als unabhängige Variable anzugeben: Die Fehler müssen auf einer Periodenperiode berechnet werden Wenn das Modell an die Daten angepasst ist. Aus technischer Sicht ist das Problem bei der Verwendung von verzögerten Fehlern als Prädiktoren, dass die Vorhersagen des Modells8217 nicht lineare Funktionen der Koeffizienten sind. Obwohl sie lineare Funktionen der vergangenen Daten sind. So müssen Koeffizienten in ARIMA-Modellen, die verzögerte Fehler enthalten, durch nichtlineare Optimierungsmethoden (8220hill-climbing8221) geschätzt werden, anstatt nur ein Gleichungssystem zu lösen. Das Akronym ARIMA steht für Auto-Regressive Integrated Moving Average. Die Verzögerungen der stationärisierten Serien in der Prognosegleichung werden als quartalspezifische Begriffe bezeichnet, die Verzögerungen der Prognosefehler werden als quadratische Begrenzungsterme bezeichnet, und eine Zeitreihe, die differenziert werden muss, um stationär zu sein, wird als eine quotintegrierte Quotversion einer stationären Serie bezeichnet. Random-Walk - und Random-Trend-Modelle, autoregressive Modelle und exponentielle Glättungsmodelle sind alle Sonderfälle von ARIMA-Modellen. Ein Nicht-Seasonal-ARIMA-Modell wird als ein Quoten-Modell von quaremA (p, d, q) klassifiziert, wobei p die Anzahl der autoregressiven Terme ist, d die Anzahl der für die Stationarität benötigten Nichtseasondifferenzen und q die Anzahl der verzögerten Prognosefehler in Die Vorhersagegleichung. Die Prognosegleichung wird wie folgt aufgebaut. Zuerst bezeichne y die d-te Differenz von Y. Das bedeutet: Beachten Sie, dass die zweite Differenz von Y (der Fall d2) nicht der Unterschied von 2 Perioden ist. Vielmehr ist es der erste Unterschied zwischen dem ersten Unterschied. Welches das diskrete Analog einer zweiten Ableitung ist, d. h. die lokale Beschleunigung der Reihe und nicht deren lokaler Trend. In Bezug auf y. Die allgemeine Prognosegleichung lautet: Hier werden die gleitenden Durchschnittsparameter (9528217s) so definiert, dass ihre Zeichen in der Gleichung nach der von Box und Jenkins eingeführten Konventionen negativ sind. Einige Autoren und Software (einschließlich der R-Programmiersprache) definieren sie so, dass sie stattdessen Pluszeichen haben. Wenn tatsächliche Zahlen in die Gleichung gesteckt sind, gibt es keine Mehrdeutigkeit, aber it8217s wichtig zu wissen, welche Konvention Ihre Software verwendet, wenn Sie die Ausgabe lesen. Oft werden die Parameter dort mit AR (1), AR (2), 8230 und MA (1), MA (2), 8230 usw. bezeichnet. Um das entsprechende ARIMA-Modell für Y zu identifizieren, beginnen Sie mit der Bestimmung der Reihenfolge der Differenzierung (D) die Serie zu stationieren und die Brutto-Merkmale der Saisonalität zu entfernen, vielleicht in Verbindung mit einer abweichungsstabilisierenden Transformation wie Protokollierung oder Entleerung. Wenn Sie an dieser Stelle anhalten und vorhersagen, dass die differenzierte Serie konstant ist, haben Sie nur einen zufälligen Spaziergang oder ein zufälliges Trendmodell ausgestattet. Allerdings können die stationärisierten Serien immer noch autokorrelierte Fehler aufweisen, was darauf hindeutet, dass in der Prognosegleichung auch eine Anzahl von AR-Terme (p 8805 1) und einigen einigen MA-Terme (q 8805 1) benötigt werden. Der Prozess der Bestimmung der Werte von p, d und q, die am besten für eine gegebene Zeitreihe sind, wird in späteren Abschnitten der Noten (deren Links oben auf dieser Seite), aber eine Vorschau auf einige der Typen diskutiert werden Von nicht-seasonalen ARIMA-Modellen, die häufig angetroffen werden, ist unten angegeben. ARIMA (1,0,0) Autoregressives Modell erster Ordnung: Wenn die Serie stationär und autokorreliert ist, kann man sie vielleicht als Vielfaches ihres eigenen vorherigen Wertes und einer Konstante voraussagen. Die prognostizierte Gleichung in diesem Fall ist 8230which ist Y regressed auf sich selbst verzögerte um einen Zeitraum. Dies ist ein 8220ARIMA (1,0,0) constant8221 Modell. Wenn der Mittelwert von Y Null ist, dann wäre der konstante Term nicht enthalten. Wenn der Steigungskoeffizient 981 & sub1; positiv und kleiner als 1 in der Grße ist (er muß kleiner als 1 in der Grße sein, wenn Y stationär ist), beschreibt das Modell das Mittelwiederkehrungsverhalten, bei dem der nächste Periode8217s-Wert 981 mal als vorher vorausgesagt werden sollte Weit weg von dem Mittelwert als dieser Zeitraum8217s Wert. Wenn 981 & sub1; negativ ist, prognostiziert es ein Mittelrückkehrverhalten mit einem Wechsel von Zeichen, d. h. es sagt auch, daß Y unterhalb der mittleren nächsten Periode liegt, wenn es über dem Mittelwert dieser Periode liegt. In einem autoregressiven Modell zweiter Ordnung (ARIMA (2,0,0)) wäre auch ein Y-t-2-Term auf der rechten Seite und so weiter. Abhängig von den Zeichen und Größen der Koeffizienten könnte ein ARIMA (2,0,0) Modell ein System beschreiben, dessen mittlere Reversion in einer sinusförmig oszillierenden Weise stattfindet, wie die Bewegung einer Masse auf einer Feder, die zufälligen Schocks ausgesetzt ist . ARIMA (0,1,0) zufälliger Spaziergang: Wenn die Serie Y nicht stationär ist, ist das einfachste Modell für sie ein zufälliges Spaziergangmodell, das als Begrenzungsfall eines AR (1) - Modells betrachtet werden kann, in dem das autoregressive Koeffizient ist gleich 1, dh eine Serie mit unendlich langsamer mittlerer Reversion. Die Vorhersagegleichung für dieses Modell kann wie folgt geschrieben werden: wobei der konstante Term die mittlere Periodenänderung (dh die Langzeitdrift) in Y ist. Dieses Modell könnte als ein Nicht-Intercept-Regressionsmodell eingebaut werden, in dem die Die erste Differenz von Y ist die abhängige Variable. Da es (nur) eine nicht-seasonale Differenz und einen konstanten Term enthält, wird es als ein quotARIMA (0,1,0) Modell mit constant. quot eingestuft. Das random-walk-without - drift-Modell wäre ein ARIMA (0,1, 0) Modell ohne Konstante ARIMA (1,1,0) differenzierte Autoregressive Modell erster Ordnung: Wenn die Fehler eines zufälligen Walk-Modells autokorreliert werden, kann das Problem eventuell durch Hinzufügen einer Verzögerung der abhängigen Variablen zu der Vorhersagegleichung behoben werden - - ie Durch den Rücktritt der ersten Differenz von Y auf sich selbst um eine Periode verzögert. Dies würde die folgende Vorhersagegleichung ergeben: die umgewandelt werden kann Dies ist ein autoregressives Modell erster Ordnung mit einer Reihenfolge von Nicht-Seasonal-Differenzen und einem konstanten Term - d. h. Ein ARIMA (1,1,0) Modell. ARIMA (0,1,1) ohne konstante, einfache exponentielle Glättung: Eine weitere Strategie zur Korrektur autokorrelierter Fehler in einem zufälligen Walk-Modell wird durch das einfache exponentielle Glättungsmodell vorgeschlagen. Erinnern Sie sich, dass für einige nichtstationäre Zeitreihen (z. B. diejenigen, die geräuschvolle Schwankungen um ein langsam variierendes Mittel aufweisen), das zufällige Wandermodell nicht so gut wie ein gleitender Durchschnitt von vergangenen Werten ausführt. Mit anderen Worten, anstatt die jüngste Beobachtung als die Prognose der nächsten Beobachtung zu nehmen, ist es besser, einen Durchschnitt der letzten Beobachtungen zu verwenden, um das Rauschen herauszufiltern und das lokale Mittel genauer zu schätzen. Das einfache exponentielle Glättungsmodell verwendet einen exponentiell gewichteten gleitenden Durchschnitt von vergangenen Werten, um diesen Effekt zu erzielen. Die Vorhersagegleichung für das einfache exponentielle Glättungsmodell kann in einer Anzahl von mathematisch äquivalenten Formen geschrieben werden. Eine davon ist die so genannte 8220error Korrektur8221 Form, in der die vorherige Prognose in Richtung des Fehlers eingestellt wird, die es gemacht hat: Weil e t-1 Y t-1 - 374 t-1 per Definition, kann dies wie folgt umgeschrieben werden : Das ist eine ARIMA (0,1,1) - ohne Konstante Prognose Gleichung mit 952 1 1 - 945. Dies bedeutet, dass Sie eine einfache exponentielle Glättung passen können, indem Sie es als ARIMA (0,1,1) Modell ohne Konstant und der geschätzte MA (1) - Koeffizient entspricht 1-minus-alpha in der SES-Formel. Erinnern daran, dass im SES-Modell das Durchschnittsalter der Daten in den 1-Perioden-Prognosen 1 945 beträgt. Dies bedeutet, dass sie dazu neigen, hinter Trends oder Wendepunkten um etwa 1 945 Perioden zurückzukehren. Daraus folgt, dass das Durchschnittsalter der Daten in den 1-Periodenprognosen eines ARIMA (0,1,1) - without-constant-Modells 1 (1 - 952 1) beträgt. So, zum Beispiel, wenn 952 1 0.8, ist das Durchschnittsalter 5. Wenn 952 1 sich nähert, wird das ARIMA (0,1,1) - without-konstantes Modell zu einem sehr langfristigen gleitenden Durchschnitt und als 952 1 Nähert sich 0 wird es zu einem zufälligen Walk-ohne-Drift-Modell. Was ist der beste Weg, um Autokorrelation zu korrigieren: Hinzufügen von AR-Terme oder Hinzufügen von MA-Terme In den vorangegangenen zwei Modellen, die oben diskutiert wurden, wurde das Problem der autokorrelierten Fehler in einem zufälligen Walk-Modell auf zwei verschiedene Arten festgelegt: durch Hinzufügen eines verzögerten Wertes der differenzierten Serie Zur Gleichung oder Hinzufügen eines verzögerten Wertes des Prognosefehlers. Welcher Ansatz ist am besten Eine Faustregel für diese Situation, die später noch ausführlicher erörtert wird, ist, dass eine positive Autokorrelation in der Regel am besten durch Hinzufügen eines AR-Termes zum Modell behandelt wird und eine negative Autokorrelation wird meist am besten durch Hinzufügen eines MA Begriff. In geschäftlichen und ökonomischen Zeitreihen entsteht oftmals eine negative Autokorrelation als Artefakt der Differenzierung. (Im Allgemeinen verringert die Differenzierung die positive Autokorrelation und kann sogar einen Wechsel von positiver zu negativer Autokorrelation verursachen.) So wird das ARIMA (0,1,1) - Modell, in dem die Differenzierung von einem MA-Term begleitet wird, häufiger als ein ARIMA (1,1,0) Modell. ARIMA (0,1,1) mit konstanter, einfacher, exponentieller Glättung mit Wachstum: Durch die Implementierung des SES-Modells als ARIMA-Modell erhalten Sie gewisse Flexibilität. Zunächst darf der geschätzte MA (1) - Koeffizient negativ sein. Dies entspricht einem Glättungsfaktor größer als 1 in einem SES-Modell, was in der Regel nicht durch das SES-Modell-Anpassungsverfahren erlaubt ist. Zweitens haben Sie die Möglichkeit, einen konstanten Begriff im ARIMA-Modell einzubeziehen, wenn Sie es wünschen, um einen durchschnittlichen Trend ungleich Null abzuschätzen. Das ARIMA (0,1,1) - Modell mit Konstante hat die Vorhersagegleichung: Die Prognosen von einem Periodenvorhersage aus diesem Modell sind qualitativ ähnlich denen des SES-Modells, mit der Ausnahme, dass die Trajektorie der Langzeitprognosen typischerweise ein Schräge Linie (deren Steigung gleich mu ist) anstatt einer horizontalen Linie. ARIMA (0,2,1) oder (0,2,2) ohne konstante lineare exponentielle Glättung: Lineare exponentielle Glättungsmodelle sind ARIMA-Modelle, die zwei Nichtseason-Differenzen in Verbindung mit MA-Terme verwenden. Der zweite Unterschied einer Reihe Y ist nicht einfach der Unterschied zwischen Y und selbst, der um zwei Perioden verzögert ist, sondern vielmehr der erste Unterschied der ersten Differenz - i. e. Die Änderung der Änderung von Y in der Periode t. Somit ist die zweite Differenz von Y in der Periode t gleich (Y t - Y t - 1) - (Y t - 1 - Y t - 2) Y t - 2Y t - 1 Y t - 2. Eine zweite Differenz einer diskreten Funktion ist analog zu einer zweiten Ableitung einer stetigen Funktion: sie misst die quotaccelerationquot oder quotcurvaturequot in der Funktion zu einem gegebenen Zeitpunkt. Das ARIMA (0,2,2) - Modell ohne Konstante prognostiziert, dass die zweite Differenz der Serie gleich einer linearen Funktion der letzten beiden Prognosefehler ist: die umgeordnet werden kann: wobei 952 1 und 952 2 die MA (1) und MA (2) Koeffizienten Dies ist ein allgemeines lineares exponentielles Glättungsmodell. Im Wesentlichen das gleiche wie Holt8217s Modell, und Brown8217s Modell ist ein Sonderfall. Es verwendet exponentiell gewichtete Bewegungsdurchschnitte, um sowohl eine lokale Ebene als auch einen lokalen Trend in der Serie abzuschätzen. Die langfristigen Prognosen von diesem Modell konvergieren zu einer geraden Linie, deren Hang hängt von der durchschnittlichen Tendenz, die gegen Ende der Serie beobachtet wird. ARIMA (1,1,2) ohne konstante gedämpfte Trend-lineare exponentielle Glättung. Dieses Modell wird in den beiliegenden Folien auf ARIMA-Modellen dargestellt. Es extrapoliert den lokalen Trend am Ende der Serie, aber erhebt es bei längeren Prognosehorizonten, um eine Note des Konservatismus einzuführen, eine Praxis, die empirische Unterstützung hat. Sehen Sie den Artikel auf quotWhy der Damped Trend Workquot von Gardner und McKenzie und die quotGolden Rulequot Artikel von Armstrong et al. für Details. Es ist grundsätzlich ratsam, an Modellen zu bleiben, bei denen mindestens eines von p und q nicht größer als 1 ist, dh nicht versuchen, ein Modell wie ARIMA (2,1,2) zu passen, da dies wahrscheinlich zu Überfüllung führen wird Und quotcommon-factorquot-Themen, die ausführlicher in den Anmerkungen zur mathematischen Struktur von ARIMA-Modellen diskutiert werden. Spreadsheet-Implementierung: ARIMA-Modelle wie die oben beschriebenen sind einfach in einer Kalkulationstabelle zu implementieren. Die Vorhersagegleichung ist einfach eine lineare Gleichung, die sich auf vergangene Werte der ursprünglichen Zeitreihen und vergangene Werte der Fehler bezieht. So können Sie eine ARIMA-Prognosekalkulationstabelle einrichten, indem Sie die Daten in Spalte A, die Prognoseformel in Spalte B und die Fehler (Daten minus Prognosen) in Spalte C speichern. Die Prognoseformel in einer typischen Zelle in Spalte B wäre einfach Ein linearer Ausdruck, der sich auf Werte in vorangehenden Zeilen der Spalten A und C bezieht, multipliziert mit den entsprechenden AR - oder MA-Koeffizienten, die in anderen Zellen auf der Spreadsheet gespeichert sind. Technische Analyse: Verschieben von Durchschnittswerten Die meisten Diagrammmuster zeigen eine große Veränderung der Preisbewegung. Dies kann es schwierig für Händler, eine Vorstellung von einem Sicherheits-Gesamt-Trend zu bekommen. Eine einfache Methode Händler verwenden, um dies zu bekämpfen ist, um gleitende Durchschnitte anzuwenden. Ein gleitender Durchschnitt ist der durchschnittliche Preis einer Sicherheit über einen festgelegten Zeitaufwand. Durch das Plotten eines Sicherheits-Durchschnittspreises wird die Preisbewegung geglättet. Sobald die alltäglichen Schwankungen beseitigt sind, sind die Händler besser in der Lage, den wahren Trend zu identifizieren und die Wahrscheinlichkeit zu erhöhen, dass sie zu ihren Gunsten arbeiten wird. (Um mehr zu erfahren, lesen Sie die Moving Averages Tutorial.) Arten von Moving Averages Es gibt eine Reihe von verschiedenen Arten von gleitenden Durchschnitten, die in der Art variieren, wie sie berechnet werden, aber wie jeder Durchschnitt interpretiert wird, bleibt gleich. Die Berechnungen unterscheiden sich nur in Bezug auf die Gewichtung, die sie auf die Preisdaten setzen, wobei sie von der gleichen Gewichtung jedes Preispunktes zu mehr Gewicht auf die jüngsten Daten gelegt werden. Die drei häufigsten Arten von gleitenden Durchschnitten sind einfach. Linear und exponentiell. Simple Moving Average (SMA) Dies ist die häufigste Methode, um den gleitenden Durchschnitt der Preise zu berechnen. Es dauert einfach die Summe aller vergangenen Schlusskurse über den Zeitraum und teilt das Ergebnis durch die Anzahl der bei der Berechnung verwendeten Preise. Zum Beispiel werden in einem 10-tägigen gleitenden Durchschnitt die letzten 10 Schlusskurse addiert und dann durch 10 geteilt. Wie Sie in Abbildung 1 sehen können, ist ein Händler in der Lage, den Durchschnitt weniger auf die sich ändernden Preise durch die Erhöhung der Zahl zu reagieren Der bei der Berechnung verwendeten Perioden. Die Erhöhung der Anzahl der Zeiträume in der Berechnung ist eine der besten Möglichkeiten, um die Stärke des langfristigen Trends und die Wahrscheinlichkeit, dass es umgekehrt zu messen. Viele Einzelpersonen argumentieren, dass die Nützlichkeit dieser Art von Durchschnitt begrenzt ist, weil jeder Punkt in der Datenreihe den gleichen Einfluss auf das Ergebnis hat, unabhängig davon, wo es in der Sequenz auftritt. Die Kritiker argumentieren, dass die aktuellsten Daten wichtiger sind und daher auch eine höhere Gewichtung haben sollte. Diese Art von Kritik war einer der Hauptfaktoren, die zur Erfindung anderer Formen von sich bewegenden Mitteln führten. Linear gewichteter Durchschnitt Dieser gleitende Durchschnittsindikator ist der am wenigsten verbreitete der drei und wird verwendet, um das Problem der gleichen Gewichtung zu adressieren. Der linear gewichtete gleitende Durchschnitt wird berechnet, indem man die Summe aller Schlusskurse über einen bestimmten Zeitraum annimmt und sie durch die Position des Datenpunktes multipliziert und dann durch die Summe der Anzahl der Perioden dividiert. Zum Beispiel wird in einem fünftägigen linear gewichteten Durchschnitt der heutige Schlusskurs mit fünf, gestern um vier und so weiter multipliziert, bis der erste Tag im Periodenbereich erreicht ist. Diese Zahlen werden dann addiert und durch die Summe der Multiplikatoren dividiert. Exponential Moving Average (EMA) Diese gleitende Durchschnittsberechnung verwendet einen Glättungsfaktor, um ein höheres Gewicht auf die jüngsten Datenpunkte zu legen und gilt als wesentlich effizienter als der linear gewichtete Durchschnitt. Ein Verständnis der Berechnung ist nicht generell für die meisten Händler erforderlich, da die meisten Charting-Pakete die Berechnung für Sie tun. Das Wichtigste an den exponentiellen gleitenden Durchschnitt zu erinnern ist, dass es besser auf neue Informationen in Bezug auf den einfachen gleitenden Durchschnitt reagiert. Diese Reaktionsfähigkeit ist einer der Schlüsselfaktoren, warum dies der gleitende Durchschnitt der Wahl unter vielen technischen Händlern ist. Wie Sie in Abbildung 2 sehen können, steigt eine 15-Punkte-EMA und fällt schneller als ein 15-Perioden-SMA. Dieser leichte Unterschied scheint nicht so viel, aber es ist ein wichtiger Faktor zu bewusst sein, da es die Rückkehr beeinflussen kann. Wichtige Verwendungswege von gleitenden Durchschnitten Durchgehende Durchschnitte werden verwendet, um aktuelle Trends und Trendumkehrungen zu identifizieren sowie Unterstützung und Widerstandswerte einzurichten. Durchgehende Mittelwerte können verwendet werden, um schnell zu erkennen, ob sich eine Sicherheit in einem Aufwärtstrend oder einem Abwärtstrend bewegt, abhängig von der Richtung des gleitenden Durchschnitts. Wie Sie in Abbildung 3 sehen können, wenn ein gleitender Durchschnitt aufwärts geht und der Preis darüber liegt, ist die Sicherheit in einem Aufwärtstrend. Umgekehrt kann ein abwärts geneigter gleitender Durchschnitt mit dem unten stehenden Preis verwendet werden, um einen Abwärtstrend zu signalisieren. Eine andere Methode zur Bestimmung des Impulses besteht darin, die Reihenfolge eines Paares von gleitenden Durchschnitten zu betrachten. Wenn ein kurzfristiger Durchschnitt über einem längerfristigen Durchschnitt liegt, steigt der Trend Auf der anderen Seite signalisiert ein langfristiger Durchschnitt über einem kürzeren Durchschnitt eine Abwärtsbewegung im Trend. Die Verschiebung der durchschnittlichen Trendumkehrungen erfolgt auf zwei Arten: Wenn sich der Preis durch einen gleitenden Durchschnitt bewegt und wenn er sich durch bewegte durchschnittliche Übergänge bewegt. Das erste gemeinsame Signal ist, wenn der Preis durch einen wichtigen gleitenden Durchschnitt geht. Zum Beispiel, wenn der Preis einer Sicherheit, die in einem Aufwärtstrend war, unter einen 50-Perioden-gleitenden Durchschnitt fällt, wie in Abbildung 4, ist es ein Zeichen, dass der Aufwärtstrend umgekehrt werden kann. Das andere Signal einer Trendumkehr ist, wenn ein gleitender Durchschnitt einen anderen durchquert. Zum Beispiel, wie Sie in Abbildung 5 sehen können, wenn der 15-tägige gleitende Durchschnitt über dem 50-Tage-gleitenden Durchschnitt übergeht, ist es ein positives Zeichen dafür, dass der Preis beginnen wird zuzunehmen. Sind die bei der Berechnung verwendeten Perioden relativ kurz, z. B. 15 und 35, so könnte dies eine kurzfristige Trendumkehr signalisieren. Auf der anderen Seite, wenn zwei Durchschnitte mit relativ langen Zeitrahmen überqueren (zB 50 und 200), wird dies verwendet, um eine langfristige Trendverlagerung vorzuschlagen. Ein weiterer wichtiger Weg, um die Durchschnitte zu nutzen, ist die Identifizierung von Unterstützungs - und Widerstandsniveaus. Es ist nicht ungewöhnlich, einen Vorrat zu sehen, der fiel, stoppen seinen Niedergang und umgekehrte Richtung, sobald er die Unterstützung eines großen gleitenden Durchschnittes trifft. Ein Umzug durch einen großen gleitenden Durchschnitt wird oft als Signal von technischen Händlern verwendet, dass der Trend umgekehrt wird. Zum Beispiel, wenn der Preis durch den 200-Tage-gleitenden Durchschnitt in einer Abwärtsrichtung bricht, ist es ein Signal, dass der Aufwärtstrend umgekehrt ist. Durchgehende Durchschnitte sind ein leistungsfähiges Werkzeug, um den Trend in einer Sicherheit zu analysieren. Sie bieten nützliche Unterstützung und Widerstandspunkte und sind sehr einfach zu bedienen. Die häufigsten Zeitrahmen, die bei der Erstellung von gleitenden Durchschnitten verwendet werden, sind die 200-Tage-, 100-Tage-, 50-Tage-, 20-Tage - und 10-Tage-Tage. Der 200-tägige Durchschnitt wird als ein gutes Maß für ein Handelsjahr, ein 100-Tage-Durchschnitt von einem halben Jahr, ein 50-Tage-Durchschnitt von einem Vierteljahr, ein 20-Tage-Durchschnitt von einem Monat und 10 - Tag durchschnittlich zwei Wochen. Durchgehende Mittelwerte helfen technischen Händlern, etwas von dem Lärm zu glätten, das in den täglichen Preisbewegungen gefunden wird, was den Händlern einen klareren Blick auf die Preisentwicklung gibt. Bisher haben wir uns auf die Preisbewegung konzentriert, durch Diagramme und Durchschnitte. Im nächsten Abschnitt, schauen Sie sich einige andere Techniken verwendet, um Preisbewegung und Muster zu bestätigen. Technische Analyse: Indikatoren und Oszillatoren

No comments:

Post a Comment